3 research outputs found

    On the effectiveness of the incremental approach to minimal chordal edge modification

    Get PDF
    Because edge modification problems are computationally difficult for most target graph classes, considerable attention has been devoted to inclusion-minimal edge modifications, which are usually polynomial-time computable and which can serve as an approximation of minimum cardinality edge modifications, albeit with no guarantee on the cardinality of the resulting modification set. Over the past fifteen years, the primary design approach used for inclusion-minimal edge modification algorithms is based on a specific incremental scheme. Unfortunately, nothing guarantees that the set E of edge modifications of a graph G that can be obtained in this specific way spans all the inclusion-minimal edge modifications of G. Here, we focus on edge modification problems into the class of chordal graphs and we show that for this the set E may not even contain any solution of minimum size and may not even contain a solution close to the minimum; in fact, we show that it may not contain a solution better than within an Ω(n) factor of the minimum. These results show strong limitations on the use of the current favored algorithmic approach to inclusion-minimal edge modification in heuristics for computing a minimum cardinality edge modification. They suggest that further developments might be better using other approaches.publishedVersio

    On the effectiveness of the incremental approach to minimal chordal edge modification

    No full text
    Because edge modification problems are computationally difficult for most target graph classes, considerable attention has been devoted to inclusion-minimal edge modifications, which are usually polynomial-time computable and which can serve as an approximation of minimum cardinality edge modifications, albeit with no guarantee on the cardinality of the resulting modification set. Over the past fifteen years, the primary design approach used for inclusion-minimal edge modification algorithms is based on a specific incremental scheme. Unfortunately, nothing guarantees that the set E of edge modifications of a graph G that can be obtained in this specific way spans all the inclusion-minimal edge modifications of G. Here, we focus on edge modification problems into the class of chordal graphs and we show that for this the set E may not even contain any solution of minimum size and may not even contain a solution close to the minimum; in fact, we show that it may not contain a solution better than within an Ω(n) factor of the minimum. These results show strong limitations on the use of the current favored algorithmic approach to inclusion-minimal edge modification in heuristics for computing a minimum cardinality edge modification. They suggest that further developments might be better using other approaches

    Cyclability in graph classes

    No full text
    A subset T ⊆ V(G) of vertices of a graph G is said to be cyclable if G has a cycle C containing every vertex of T, and for a positive integer k, a graph G is k-cyclable if every set of vertices of size at most k is cyclable. The Terminal Cyclability problem asks, given a graph G and a set T of vertices, whether T is cyclable, and the k-Cyclability problem asks, given a graph G and a positive integer k, whether G is k-cyclable. These problems are generalizations of the classical Hamiltonian Cycle problem. We initiate the study of these problems for graph classes that admit polynomial algorithms for Hamiltonian Cycle. We show that Terminal Cyclability can be solved in linear time for interval graphs, bipartite permutation graphs and cographs. Moreover, we construct certifying algorithms that either produce a solution, that is a cycle, or output a graph separator that certifies a no-answer. We use these results to show that k-Cyclability can be solved in polynomial time when restricted to the aforementioned graph classes.publishedVersio
    corecore